
LEAST PRIVILEGE IN SEPARATION KERNELS

Timothy E. Levin, Cynthia E. Irvine, Thuy D. Nguyen
Department of Computer Science, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA USA

�levin@nps.edu, �irvine@nps.edu, tdnguyen@nps.edu

Keywords: Assurance, Computer Security, Least Privilege, Separation Kernel

Abstract: We extend the separation kernel abstraction to represent the enforcement of the principle of least privilege.
In addition to the inter-block flow control policy prescribed by the traditional separation kernel paradigm,
we describe an orthogonal, finer-grained flow control policy by extending the protection of elements to
subjects and resources, as well as blocks, within a partitioned system. We show how least privilege applied
to the actions of subjects provides enhanced protection for secure systems.

1 INTRODUCTION

The Sisyphean purgatory of penetrate and patch to
which users of commodity systems are currently
subjected has lead to increasing recognition that
platforms with assurance of penetration resistance
and non-bypassability are required for certain
critical functions. This need for high assurance calls
for a layered system architecture where enforcement
mechanisms of the most critical policies themselves
depend upon layers of no less assurance. For many
high assurance systems currently being planned or
developed, a general-purpose security kernel may
provide more functionality than necessary, which
has resulted in increased interest in the use of
separation kernels to support real-time embedded
systems and virtual machine monitors (VMM).
Many of these separation kernels are minimized to
have both static policies and static allocation of
resources, such as is suitable for certain fixed-
configuration or embedded environments.

Despite a resurgence of interest in the separation
kernel approach, the principle of least privilege
(PoLP) (Saltzer, 1975) is often overlooked in the
design of traditional separation kernels due to the
belief that a separation kernel should only be
concerned with resource isolation. A principal
consequence of this omission is that problems
relating to all-or-nothing security and over-
privileged programs are left for application
designers (and security evaluators) to resolve. For
systems that must protect highly sensitive or highly
valuable resources, formal verification of the ability

of the system to enforce its security policy is
required. Recent advances in the assurance
requirements for high assurance systems (NSA,
2004) have included verification of the target
system’s conformance to the principle of least
privilege. To provide vendors and integrators with
tools to formally describe least privilege in
separation kernels, a least privilege separation model
is presented.

1.1 A Least Privileged Separation Kernel

In the context of a research project to build a high
assurance separation kernel (Irvine, 2004) we have
extended the separation kernel abstraction so that the
principle of least privilege can be examined at the
model level and can be verified to be enforced by
systems that conform to that model.

The traditional separation kernel paradigm
describes a security policy in which activities in
different blocks of a partitioned system are not
visible to other blocks, except perhaps for certain
specified flows allowed between blocks. (Here,
“block” is defined in the traditional mathematical
sense as a member of the non-intersecting set of
elements that comprise the partition 0). If
information flow is described only at the block level,
then everything in a block can flow to everything in
another block. This is contrary to the principle of
least privilege required in high assurance systems.
The least privilege separation model builds on the
traditional separation abstraction by extending the
granularity of described elements to the subjects

(Lampson, 1974) and resources within the partition.
An orthogonal flow control policy can then be
expressed relative to subjects and resources, thus
providing all of the functionality and protection of
the traditional separation kernel, combined with a
high level of confidence that the effects of subjects’
activities may be minimized to their intended scope.

In the sections that follow we will elaborate on
the concept of separation kernels and the need for
least privilege in such systems. In particular, the
granularity of inter-block flows will be discussed in
terms of “subject” and “resource” abstractions. A
formalization of the least privilege separation model
is presented and several aspects of secure system
design and verification are discussed with respect to
the model. The last sections of the paper review
related work, and summarize our results.

2 Concepts

2.1 The Separation Kernel

The term separation kernel was introduced by
Rushby, who originally proposed, in the context of a
distributed system, that a separation kernel creates
“within a single shared machine, an environment
which supports the various components of the
system, and provides the communications channels
between them, in such a way that individual
components of the system cannot distinguish this
shared environment from a physically distributed
one” (Rushby, 1981). A separation kernel divides
all resources under its control into blocks such that
the actions of an active entity (i.e., a subject) in one
block are isolated from (viz., cannot be detected by
or communicated to) an active entity in another
block, unless an explicit means for that
communication has been established (e.g., via
configuration data).

A separation kernel achieves isolation of subjects
in different blocks by virtualization of shared
resources: each block encompasses a resource set
that appears to be entirely its own. To achieve this
objective for resources that can only be utilized by
one subject at a time, such as the CPU, the ideal
separation kernel must ensure that the temporal
usage patterns of subjects from different blocks are
not apparent to each other. Other resources, such as
memory, may be accessed by different blocks
simultaneously, while preserving idealized isolation,
if the separation kernel ensures, for example, that

blocks are allocated different and non-interacting
portions of the resource. Furthermore, kernel
utilization of its own internal resources must also
preserve the desired isolation properties.

Separation kernels differ from virtual machine
monitors, in that support for communication
between blocks is required in the former, whereas a
functional replication of the hardware interface is
required in the latter. Specific implementations
may, however, provide both kinds of support.

2.2 The Principle of Least Privilege

Saltzer and Schroeder concluded that least privilege
is one of the eight design principles that can reduce
design flaws (Saltzer, 1975). They defined least
privilege by stating “every program and every user
of the system should operate using the least set of
privileges necessary to complete the job. Primarily,
this principle limits the damage that can result from
an accident or error. It also reduces the number of
potential interactions among privileged programs to
the minimum for correct operation, so that
unintentional, unwanted, or improper uses of
privilege are less likely to occur.”

A decade later, the U.S. Department of Defense
included a similar definition of least privilege in the
Trusted Computer System Evaluation Criteria
(TCSEC) (DoD, 1985). Layering, modularity and
information hiding are constructive techniques for
least privilege that can be applied to the internal
architecture of the underlying trusted foundation
(e.g., separation kernel) to improve the system’s
resistance to penetration. The kernel can also be
configured to utilize protection mechanisms such as
access control and fine-grained execution domains
to limit the abilities of a subject so that it is
constrained to perform only the tasks for which it is
authorized.

2.3 High Assurance Criteria and Least
Privilege

The TCSEC refers to the principle of Least Privilege
in two different contexts: the internal structure of the
“trusted computing base” (TCB), and the ability of
the TCB to grant to subjects a minimal set of
authorizations or privileges. Despite the lack of an
explicit reference to the principle of least privilege,
the Common Criteria (CC) (CCPSO, 2005) provides
the groundwork for it in several ways. It defines
assurance as “grounds for confidence that an entity
meets its security objectives.” The CC explains that

the correctness and effectiveness of the security
functions are the primary factors for establishing the
assurance that security objectives are met. A high
assurance separation kernel must be proven to
correctly implement the security functions defined in
its specifications and effectively mitigate risks to a
level commensurate with the value of the assets it
protects. To complement the formal proof, a
constructive analysis is used to demonstrate that the
implementation maps to the specification. Thus, a
focus on resource separation and the structured
allotment of privileges affords simplicity to the
separation kernel, and enables a high assurance
analysis of the correctness of its implementation.

If a system cannot restrict individual users and
programs to have only the access authorizations that
they require to complete their functions, the
accountability mechanisms (e.g., audit) will likely be
less able to accurately discern the cause of various
actions. A securely deployed system must be
capable of supporting least privilege, and must have
been administratively configured such that any
programs that might execute will be accorded access
to the minimal set of resources required to complete
their jobs. To provide high assurance of policy
enforcement, a system should be able to apply least
privilege at the same granularity as the resource
abstractions that it exports (e.g., individual files and
processes).

2.4 Practical Considerations

In the commercial security community, the use of
the principle of least privilege has taken on the
primary meaning, over time, of placing limits on the
set of simultaneous policy-exemption privileges that
a single user or application program can hold, such
as may be associated with a ‘root’ process on a
UNIX system. The commercial use of “least
privilege” is not concerned with internal TCB
structure or with the limitation of normal file-access
authorizations for non-privileged processes. Note
however, that a separation kernel has no notion of
policy-exemption privileges or of privileged
processes -- if the SK does not provide individual
authorizations to the resources available at its
interface, it cannot be used provide least privilege
protection in the application domain. It is also noted
that commercial product vendors have long ignored
the assurance benefits of well-structured code.
Thus, commercial product development experience
and precedence in the area of PoLP is not germane
to the construction of high robustness separation

kernels, wherein both contexts of PoLP must be
applied.

In practice, a separation kernel providing strict
isolation is of little value. Controlled relaxation of
strict separation allows applications to interact in
useful ways, including participation in the
enforcement of application-level policies. In the
latter case, applications hosted on a separation
kernel will need to be examined and evaluated to
ensure that the overall system security policies are
enforced. A monolithic application that runs with the
same set of privileges throughout all of its modules
and processes is hard to evaluate. In order to reason
about the assurance properties of the system, the
applications should be decomposed into components
requiring varying levels of privilege. Such
decomposition is more meaningful if the privilege
boundaries are enforced by the separation kernel,
rather than relying on, for example, error-prone ad
hoc agreements between programmers or
integrators. The principle of least privilege affords a
greater degree of scrutiny to the evaluation of both
the kernel and the application, resulting in a higher
level of assurance that the overall system security
objectives are met.

To better understand the use of least privilege in
a separation kernel, we now turn to a closer
examination of isolation and flows in these systems.

3 Inter-Block Flows

The first-order goal of a separation kernel is to
provide absolute separation of the (effects of)
activities occurring in different blocks. In practice,
however, separation kernels are often used to share
hardware among kindred activities that have reason
to communicate in some controllable fashion.
Therefore, we include in the separation kernel a
policy and mechanism for the controlled sharing of
information between blocks.

The control of information flow between blocks
can be expressed abstractly in an access matrix, as
shown in the example of Table 1. This allows
arbitrary sharing to be defined, establishing the
inter-block flow policy to be enforced on the
separation kernel applications.

Table 1: Block-to-Block Flow Matrix

Block A

Block B

Block C
 Block A

RWX

W

-
 Block B

-

RWX

W
 Block C

-

-

RWX

Notice that an inter-block flow policy in which
the flow relationships partially order the blocks,
such as in Table 1, may be suitable for the
enforcement by the separation kernel of a multilevel
confidentiality or integrity policy if meaningful
sensitivity labels are immutable attributes of the
blocks. Under the conditions that a static separation
kernel does not change the policy or resource
allocation during execution, and that the policy is
not changed while the separation kernel is shut
down, the policy may be considered to be global and
persistent, viz. non-discretionary. In this example,
information flows (represented by ⇒) form the
following ordering: Block A ⇒ Block B ⇒ Block
C. An assignment of labels to these blocks in
conjunction with the rules defined in Table 1 results
in a recognizable multilevel security policy:

Block A := Unclassified
Block B := Secret
Block C := Top Secret

The block-to-block flow policy allows all of the
information in a “source” block (e.g., Block A,
above) to flow to every element of a “target” block
(e.g., Block B, above). Extending the Table 1
scenario, if block B is also allowed to write to block
A, for example to implement a downgrade function
with respect to the assigned labels, then all of the
code or program(s) in block B would need to be
examined to ensure that their activities correspond to
the intended downgrading semantics. If this
assurance of correct behavior cannot be provided,
such a circular flow (A ⇒ B ⇒ A) would create, in
effect, one large policy equivalence class consisting
of all of the information in blocks A and B.

To limit the effects of block-to-block flows, we
next introduce the notion of controlling how much
information is to be allowed to flow between and
within blocks.

4 Least Privilege Flow Control

The implementation of a separation kernel results in
the creation of active entities (subjects) that execute
under the control of the separation kernel and the
virtualization of system resources exported at the
kernel interface (see Figure 1). Historically, many
security models have utilized the abstraction of an
object (Lampson, 1974). Because objects have been
classified in various ways, we decided to avoid this
nomenclature issue by simply modeling “resources.”
Similarly, as the definition of “resources” includes
the abstractions that are exported by the separation
kernel, “subjects” are defined to be a type of
resource.

Resources are defined as the totality of all
hardware, firmware and software and data that are
executed, utilized, created, protected or exported by
the separation kernel. Exported resources are those
resources (including subjects) to which an explicit
reference is possible via the separation kernel
interface. That interface may include programming,
administrative, and other interfaces. In contrast,
internal resources are those resources for which no
explicit reference is possible via the kernel interface.

Various implementations of separation kernels
have elected to describe the system only in terms of
blocks without describing the active system entities
that cause information flow. Since the concept of
subjects (Lampson, 1974) is a term of art – and for
good reason – we will use it to describe the active

Figure 1: Example Separation Kernel Configuration

Separation Kernel Security Functions

Block A Block B Block C

Subject

1

Subject

3

Resource

9

Resource

6

Resource

8

Resource

7

Resource 4

Resource

5

Subject

2

Resource

10

In
te

rn
a

l

R
e
s
o
u
rc

e
s

E
x
p

o
rt

e
d

 R
e

s
o

u
rc

e
s

entities exported by in the separation kernel.
We have found the use of the subject abstraction

to be indispensable for reasoning about security in
secure systems. Without the subject abstraction, it
may be difficult to understand, for example, which
block in a partitioned system is the cause of a flow
between blocks (Alves-Foss, 2004) (e.g., the flow
could have been caused by the receiving block as a
reader or by the sending block as a writer), which
application programs within a block need to be
trusted (e.g., evaluated with respect to the security
policy), and how to minimally configure the
programs and resources of such a system to achieve
the principle of least privilege. Just as when writing
prose, if actions are described passively (i.e., not
attributable to the subject of a sentence) the cause of
the action can be ambiguous. In addition, use of
subjects permits construction of a resource-to-block
allocation that provides a minimal configuration for
least privilege (see Section 4.3). Modeling of
subjects within a partition also allows the
representation and examination of more complex
architectures such as multiple rings of execution, as
well as multithreaded and multi-process approaches.

Figure 1 shows an example separation kernel
system with three blocks, three subjects, a set of
other resources, and some designated flows.

An allocation of subjects and other exported
resources to blocks is illustrated in Table 2, i.e., a
“tagging” of each subject and resource with its
partition (per Figure 1). Of the resources described
in this table, the first three are subjects and the
remaining exported resources are passive. Every
resource is allocated to one and only one block.
Consequently, we can state that the blocks of the
separation kernel constitute a partition (in the
mathematical sense) where: R is the nonempty set of
resources and B is a nonempty set of subsets of R
such that each element of R belongs to exactly one
of the elements of B. From elementary set theory, it
is known that a partition, B, can be used to create an
equivalence relation on R. Thus we may induce that
the allocation of resources to partitions creates
equivalence classes.

Table 2: Resource to Block Allocation

Resources
1 2 3 4 5 6 7 8 9 10

Bl
oc

ks

A A B A A B B B C C

The principle of least privilege requires that each
subject be given only the privileges required to do its

particular task and no more. The separation kernel
can support this objective by assigning access rights
appropriately to the subjects within the block. Rules
can be defined for accessing different resources
within a block. Table 3 illustrates how allocations to
support the principle of least privilege are possible
when the separation kernel supports per-subject and
per-resource flow-control granularity: no subject is
given more access than what is required to allow the
desired flows (only the resources that are part of a
flow are shown in this table).

Table 3: Subject-to-Resource Flow Matrix

Resources
1 2 4 5 6 9

1 - RW RW - - -
2 RW - - R W -

Su
bj

ec
ts

3 - - - - RW W

Together, Tables 2 and 3 show abstract

structures which allow only the flows illustrated in
Figure 1. It is clear that the corresponding Block-to-
Block flow matrix in Table 1, by itself, would allow
many more flows than those illustrated in Figure 1.

5 Applications of Least Privilege

5.1 Kernel-controlled Interference

In practical MLS system policies, several cases arise
in which the normal information flow rules are
enhanced. For example, (1) a high confidentiality
user may need to downgrade a file and send it to a
low confidentiality user, and (2) a high integrity user
may need to read a low integrity executable file
(viz., a program). In both cases, the system may
allow the transfer if the file passes through an
appropriate filter: in the former, the filter must
ensure that the file does not include any high-
confidentiality information; in the latter case, the
filter must ensure that the file does not include any
Trojan Horses. These system policies allow a
“controlled” interference of the low sensitivity
domain (sometimes called “intransitive
noninterference” (Rushby92)). That is, a flow
connecting two endpoint processes is prohibited
except when going through an intermediate filter
process.

A typical implementation of these policies in
separation kernel and security kernel architectures is
to use a “trusted subject,” in which the filter process
is assigned a security range that spans the
confidentiality or integrity range of the endpoint
processes. However, this solution has the drawback
that the kernel allows the filter process to access all
information in both domains. With a Least Privilege
Separation Kernel, the kernel can be configured to
restrict the interference to a specific subset of the
information in each domain, thereby requiring less
trust in to be placed the filter process, as shown in
Figure 2.

5.2 Regraders

Within a block, it may be necessary to perform
certain transformations on information that change
its security attributes. For example, a guard
(Anderson, 1981) performs information review and
downgrading functions; and a quality assurance
manager transforms prototype code into production
code by re-grading it in terms of reliability. For
each of these transformations there may be several
subjects within a block performing various aspects
of the task at hand. The principle of least privilege
requires that each of these subjects be given only the
privileges required to do its particular task and no
more.

An example of the application of least privilege
separation is that of a “downgrader,” (see Figure 3)
for re-grading selected information from classified
to unclassified. An initiator (UInit) process in A
writes selected classified information to a classified
holder buffer in Block A. An untrusted copier
process moves the contents of the holder to the
dirty-word search workspace in Block B. An
untrusted dirty-word search process (UDWS) in B
provides advisory confirmation that the information
is “suitable” for downgrading and copies the
information into the clean results buffer (note that
this process’s actions should be considered
“advisory” since it is fully constrained by the
mandatory policy enforcement mechanism). Then
the trusted downgrader (TDG) program in C reads
the information from the clean results buffer and
writes it to an unclassified receiver buffer in D
where it may be accessed by an unclassified end-
point process (UEnd). As constrained by least
privilege as encoded in the subject-to-resource flow
matrix, the downgrader process in Block C cannot
read from any resource other than the clean results
and cannot write to any resource in D other than the
receiver. This limits damage in the event of errors,
for example in the downgrader, initiator or search
processes, and contributes to a substantive argument
that only the downgrader program needs to be
trusted with respect to the application-level

Figure 2: Kernel-based Strictly-Controlled Interference

multilevel policy (viz., depended on to write down
only when appropriate), and thus requires security
verification with respect to that policy.

6 Related Work

6.1 Protection Profiles for Separation
Kernels

The Common Criteria security evaluation paradigm
includes a document called a protection profile that
specifies the security functionality and assurance for
an entire class of IT products, as well as a document
called a security target, which provides a similar
specification for a specific IT product. The
protection profile is evaluated for consistency with
the Common Criteria requirements for protection
profiles; the security target is evaluated for
consistency with the Common Criteria requirements
for security targets, as well as for consistency with
an identified protection profile (if any); and finally
the product is evaluated against the security target.

A forthcoming high robustness protection profile
for separation kernels (Levin, 2005; Nguyen, 2006).
includes least privilege requirements regarding
subjects as well as kernel-internal mechanisms.
Several commercial efforts are underway to develop
separation kernels to meet this profile, include those
at Greenhills, and LinuxWorks (Ames, 2003).

6.2 Trusted Computing Exemplar Project

Separation kernel technology is being applied in our
Trusted Computing Exemplar project (Irvine, 2004).

This ongoing effort is intended to produce a high
assurance least privilege separation kernel. The
kernel will have a static runtime resource
configuration and its security policy regarding
access to resources will be based on
process/resource access bindings, via offline
configuration (e.g., via an access matrix, such as are
shown in Figures 1, 2 and 4). The static nature of
resource allotment will provide predictable
processing behavior, as well as limit the covert
channels based on shared resource utilization
(Lampson, 1974; Kemmerer, 1982; Millen, 1987).
Simple process synchronization primitives will also
be provided, that can be implemented to be
demonstrably free of covert channels (Reed, 1979).
This kernel is also used as the security foundation
for the SecureCore architecture (Irvine, 2006).

6.3 Type Enforcement Architectures

Bobert and Kain (Boebert, 1985) described a “type
enforcement architecture” with the capability to
provide least privilege at a fine granularity, a form
of which is used in the SELinux project (Loscocco,
2001). There are currently no high assurance
instances of such systems today.

7 Conclusion

The separation kernel abstraction and the principle
of least privilege are significant tools for the
protection of critical system resources. In this paper,
we described a fusion of the separation abstraction
with the least privilege principle. In addition to the
inter-block flow control policy prescribed by the

Figure 3: Trusted Downgrader. Dark areas with white text are trusted.

traditional separation kernels, this approach supports
an orthogonal, finer-grained flow control policy by
extending the granularity of protected elements to
subjects and resources, as well as blocks, in a
partitioned system. We showed how least privilege
provides assurance that the effects of subjects’
activities may be minimized to their intended scope.

In summary, application of the principle of least
privilege, resource separation and controlled sharing
are synergistic security properties in a separation
kernel. Each subject is only given a minimum set of
logically separated resources necessary to perform
its assigned task, and the sharing of resources
between subjects is rigorously controlled by the
kernel. A separation kernel that correctly
implements these properties can meet the objective
to minimize and confine damage with a high level of
assurance.

Acknowledgements
We like to thank Michael McEvilley for his helpful
comments regarding the history of the principle of
least privilege.

References
Alves-Foss, Jim and Taylor, Carol. An Analysis of the

GWV Security Policy. In Proc. of Fifth International
Workshop on the ACL2 Theorem Prover and its
Applications (ACL2-2004). November 2004.

Ames, B. Real-Time Software Goes Modular. Military &
Aerospace Electronics. Vol 14, No. 9. pp24-29. Sept.
2003.

Anderson, J.P. On the Feasibility of Connecting RECON
to an External Network. Tech. Report, James P.
Anderson Co.. March 1981.

Boebert, W. E. and R. Y. Kain. A Practical Alternative to
Hierarchical Integrity Policies. In Proc. of the
National Computer Security Conference. Vol. 8, Num.
18 1985.

Common Criteria Project Sponsoring Organizations
(CCPSO). Common Criteria for Information
Technology Security Evaluation. Version 3.0 Revision
2, CCIMB-2005-07-[001, 002, 003]. June 2005.

Department of Defense (DOD). Trusted Computer System
Evaluation Criteria. DoD 5200.28-STD, December
1985.

Irvine, C. E., Levin, T. E., Nguyen, T. D., and Dinolt, G.
W. The Trusted Computing Exemplar Project. Proc. of
the 2004 IEEE Systems, Man and Cybernetics
Information Assurance Workshop. West Point, NY,
June 2004. pp. 109-115.

Irvine, C. E., SecureCore Project. last accessed 8 April
2006. last modified 5 April 2006.
http://cisr.nps.edu/projects/securecore.html.

Kemmerer, R.A. A Practical Approach to Identifying
Storage and Timing Channels. In Proc.
of the 1982 IEEE Symposium on Security and Privacy.
Oakland, CA. April 1982. pp. 66-73.

Lampson, B. Protection. In Proc. of 5th Princeton
Conference on Information Sciences. Princeton, NJ.
1971. Reprinted in Operating Systems Reviews, 8(1):
18-24, 1974.

Levin, T. E., Irvine, C. E., Nguyen, T. D.. A Note on High
Robustness Requirements for Separation Kernels.
6th International Common Criteria Conference
(ICCC 05). September 28-29, 2005.

Loscocco, P.A. Smalley, S.D. (2001). Meeting critical
security objectives with Security-Enhanced Linux. In
Proc. of the 2001 Ottawa Linux Symposium

Millen, J.K. Covert Channel Capacity. Proc of the IEEE
Symposium on Research in Security and Privacy.
Oakland, CA. pp. 60-66. April 1987.

National Security Agency (NSA). U.S. Government
Protection Profile for Separation Kernels in
Environments Requiring High Robustness. 1 July
2004. http://niap.nist.gov/pp/draft_pps/
pp_draft_skpp_hr_v0.621.html

Nguyen, T. D., Levin, T. E., and Irvine, C. E.. High
Robustness Requirements in a Common Criteria
Protection Profile. Proceedings of the Fourth IEEE
International Information Assurance Workshop. Royal
Holloway, UK. April 2006

Preparata, F. P., and Yeh, R.T.. Introduction to Discrete
Structures for Computer Science and Engineering.
Addison Wesley. Reading, MA. 1973.

Reed, D.P., and Kanodia, R.K.. Synchronization with
Eventcounts and Sequencers. Communications of the
ACM.. 22(2):115-123. 1979.

Rushby. J.. Design And Verification Of Secure Systems.
Operating Systems Review. 15(5). 1981.

Saltzer, J. H., and Schroeder, M. D.. The Protection of
Information in Operating Systems. Proceedings of the
IEEE. 63(9):1278-1308. 1975.

